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Layer dynamics of freely standing smecticA films
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The dynamics of freely standing thermotropic smeétiitms are studied in the isothermal, incompressible
limit via a continuous hydrodynamic description. The role of permeation in the films, the structure of the
hydrodynamic normal modes, and the form of the autocorrelation functions for the smectic layer and order-
parameter fluctuations are discussed. We find two characteristic Iehagih&d/ B andl .= \/7]32d/8pa asso-
ciated with the dynamic behavior of the system, whelis the surface tensiowl,is the film thicknessB is the
elastic constant for layer compressiony is the layer sliding viscosity, and is the density of the liquid
crystal. The crossover from filmlike to bulklike behavior is controlledl pyalone; the crossover from over-
damped to underdamped dynamics when the in-plane length scale is large comggredcantrolled byl
alone.

PACS numbd(s): 61.30.Cz, 68.15:¢e, 83.70.Jr

[. INTRODUCTION a thin film, with properties similar to an ordinary fluid film,
to a three-dimensional system with layer structure.

A three-dimensional Smectk-phase has a |ayered struc- In Sec. Il we briefly review the Iinear—response functions
ture with one-dimensional order along the layering directionof the surfaces of a smecti-film [11]. We show that the
and fluidlike behavior within the layers. Choosing thaxis ~ dynamic properties of the smectic layers in a freely standing
to be the symmetry-breaking direction, to linear order thefilm can be extracted from the surface response functions.

bulk elastic free-energy density is given [,2] Since the layer displacement for a smedidilm has to
satisfy certain boundary conditions on the free surfaces, the

normal modes for the dynamics of the layers depend on both

1 ou\ 2 2u o2u\? surface and bulk properties. _ . _
fb:§ B| — 1 et I (1) The crossover of the smectic-layer dynamics from film-
9z axc dy like behavior to bulklike behavior is discussed in Sec. Ill.

Two lengths,l4=+ad/B and | .= \/77§d/8pa with 1 .>1y,

: : _ hown to characterize the dynamics of the system, where
where u(r,t) is the layer displacement,=(x,y,z), andB are s e ) A
andK, are, respectively, the layer compression and undulaZ 'S (€ surface tensionlis the thickness of the film is the
tion elastic moduli. Since a uniform rotation around any axisdens'ty’ andys is the in-plane shear viscosiig0). We em-
in the xy plane costs no energy, there is neu(dx)?
+ (aulgy)? term in the elastic energy. As a result, the layer
displacement fluctuations diverge logarithmically with the
size of the system, and the smedtcphase is at its lower

critical dimension. However, the divergence is sufficiently . _ ., 45, The effects of the smectic-layer structure can
Weak that f.|n|t¢—5|ze effects stgblhzg Iaboratory samplds o found in short-time t o), short-wavelength d, I
_W|th their high degre_e of unlfor_mlt)_/ and easily controlled >1) behavior. This is supported by a recent study of the
thickness, freely standing smectic films are often used t@mectic order-parameter autocorrelation function for free-
study the finite-size and boundary effects for systems at theitanding smectié films [7], where a scaling form for the
lower critical dimensions. Experimental and theoretical Studcorrelation function is proposed and studied numerically
ies on the stati¢3—5|, dynamic[6-8], and off-equilibrium  with a discrete model. As discussed in Sec. IV, our con-
[9] properties of freely standing smectcfilms show very  tinuum theory provides the conceptual background for such
interesting behavior; some features are drastically differenbehavior with a clear picture based on the behavior of the
from bulk smectic systems, while some represent crossovédrydrodynamic normal modes.
from two-dimensional to three-dimensional behavior. In Sec. V we summarize results and add concluding re-
In this paper we introduce a continuum theory for themarks. Some additional details on permeation near the sur-
hydrodynamics of ahermotropicsmecticA film in the iso-  faces and the calculation of the dynamic correlation func-
thermal, incompressible limit based on the linear hydrodyions are provided in Appendixes A, B, and C, respectively.
namic theory constructed by Martiet al. [10]. Our study The material parameters, characteristic lengths, time
provides a finite-thickness counterpart to the hydrodynamiécales, as well as dimensionless numbers are listed in Table |
theory for bulk smectic systems. We clarify the appropri- With their definitions and typical values.
ate boundary conditions for the equations of motion, discuss
the role of permeation close to the free surfaces, compare the
structure of hydrodynamic normal modes with that of bulk
systems, and provide a theoretical picture for the dynamic We consider a freely standing smecficfilm which ex-
crossover behavior of a freely standing smeétifilm from  tends fromz=d/2 toz= —d/2 in the vertical direction and is

phasize that when the in-plane wavelengthgl) is large
compared tdy, the behavior of the system is similar to an
ordinary liquid film, and wherg, |, <1, the layer dynamics

of the system is underdamped. The characteristic time scale
for a long in-plane wavelengthq(l4<1) is shown to be

Il. HYDRODYNAMIC NORMAL MODES
OF A FREELY STANDING SMECTIC- A FILM
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TABLE |. Parameters and magnitudes.

Parameter
definition Physical meaning Magnitude

B layer compressibility 2.510" dyn/cn?

K4 layer undulation modulus 16 dyn

p smecticA density 1 g/cri

73 in-plane shear viscosity P

a surface tension 30 dyn/cm

g al JK;B 0(1)

A JK, /B penetration length 10 cm

d smecticA film thickness

lg ad/B length which separates lg~nd

= JgAd filmlike and
bulklike behavior
c Vn3digpa length which separates >y

underdamped and overdamped I./(4~50)
dynamics ing, 14<<1
regime

To n3d/2a lifetime for overdamped
n=0, q,14<1 modes

of infinite extent in thex andy directions. The geometry of In the absence of topological defects, under constant tem-

the system is shown in Fig. 1, which show$ (7) as the perature and assuming incompressibility, to linear order the
displacement of the uppélower) surface from its equilib- system satisfies the equations of motjdr2]
rium position. In the absence of external fields, the smectic
layers are always aligned and parallel to both free surfaces. Vi )
In this section we first briefly review previous resiltd] on p—r = diptdjoFhdy, Q)
the derivation of the linear-response function for the equilib-
rium surface fluctuations of a freely standing smeétititm
in the low-frequency, long-wavelength regirfit3,14], and a_u:V +¢.h (4
then extend these results to the structure of hydrodynamic ot F PP
normal modes of the system.

Suppose the system were perturbed by external forcesherev; is theith component of the velocity field, and the
with fixed in-plane wave vectay, and frequencyo on both  pressurep, is actually a Lagrange multiplier for the incom-

upper and lower surfaces, i.e., pressibility condition. The viscous stress tensor is denoted by
_ _ o' [10], ¢, is the permeation constant, and the molecular
PadrL ) =Pay(d ,w)e'drriet field h in linear theory is defined by
2
@ h=Ba#2u—K,9°9>u=B(d>— N2 )u, (5)

Pex(FL 1) =Peg(q ,@)e!d et
where\ =K, /B is the penetration lengtfl] and 92 = 52
We look for the linear-response functions of the surfaces int &f, In Eqg. (3) we sum on repeated indices, arigl
the regime of weak external forces. =aldx; .

§+
z=d2

P S P FIG. 1. Schematic of a freely standing
- [ T~ T smecticA film of thicknessd. They axis points
into the paper. The dotted lines are the equilib-
rium positions of the free surfaces.
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On the free surfaces the system has to satisfy the follow-  /S(q, ,w)=X%(q, L0)[Plld, ,0)+Payq, ,o,)],
ing boundary conditions. (13
BC1. The velocity of the free surfaces is the same as the
fnormal component of the liquid crystal velocity on the sur- (g, ,0)=XA(q, ,0)[Payd, ,©) —Pay(d, ,®,)],
aces.
BC2. For free surfaces the normal component of the perwhere
meation force should vanidi1].
BC3. The force acting on the system is continuous across §S<A):£(§+ +77) (14)
the free surfaces. 2 77
The boundary conditions lead to the following equations _ _ _
for the system: A calculation from the continuum hydrodynamics leads to
the following expressions for the response functiphs:
ar*
——=[Vals=+ap, (6) 1 1
at XS=> — , (19
2 aq?—Bay(q, ,0)tarfdg,(q, ,»)/2]

ou —0 7
(?Z — Y ( )

z=*d/2 XA_

1 1

_ 2 2q?+Bay(q, ,0)coldg,q, ,w)/2]
[Vt dVilz=+a2=0, =Xy, tS) (16)

v, au g s It appears that permeation processes have no contribution
[ | —pt2n3—+ BE) —aVi{ - Pc—?xt} =0. to the dynamics of the surfaces in the regifhd] where our
z=+df2 ) analysis is done. However, the solution &dr,t) in Eq.(10)
does not strictly satisfy BC2. This means that the contribu-
Solving Eqgs.(3) and (4) with these boundary conditions, fion from permeation enables the system to satisfy the
one finds that, in the presence of the driving forces withboundary conditiong12] but otherwise has little signifi-
giveng, ande, there are four differerg,’s. One of them is ~ C&nce The role of permeation in the dynamics of the system

associated with the diffusive motion o, andv,, and is 'S discussed in further_det%;IA;n Appendix A.

decoupled from the motion ai andv,; hence, it is irrel- 1€ response functions=" have been derived as func-
evant for the calculation of surface response functigee ~ 1ONS of the in-plane wave vectay, and frequency» of the
BC1). Another two values ofj, are associated with perme- 2PPlied external forces. One can also defwnén the com-
ation, and these contributions to the layer displacement af€X plane; then the poles of the response functions provide
small (see Appendix A The last of thesey, values domi- the natural frequencies of the surface fluctuations in the ab-

nates the contribution to the smectic-layer displacementS€Nce of driving forceg2]. In linear theory these poles also
henceu can be approximated by reveal the frequencies of layer displacement. Each pole in the

complex o plane corresponds to a hydrodynamic normal

u(r,t)=ug(q, ,w)coda,(q, ,w)z]xe'drr-iot mode associated with the layer displacement. Since we are
. _ _ not interested in the dynamics vf andv,, which decouple
+UA(d, ,0)siNa,(q, ,0)z]xe' %t L7 from the dynamics ofu and v,, these poles provide the

(10) information of interest.
Defining dimensionless parametge o/ VKB [15] and
where|q,|]<q, and, in generalg,(q, ,w) is complex under characteristic lengtH,= \ad/B=\ghd~ yAd, one finds
the conditions considerdd 3]. It is determined by the solu- for given q, , that the normal modes satisfy the following

tion of the following with Req,>0: equation:
. . *+1
lo=lw-(q,,q,), (11 Qud=+(q 14?2 cot(% } . (17
where
Thus thez dependence of the normal modes is determined,
) ngqf 4p ) 4 and the frequencies of the normal modes are determined in
iw.(q,,0,)= 2 12 \/1-— 5 (Ba;+Kyq)) |, turn by Eq.(11). One also finds that the normal modes have
sHL definite symmetry undez— —z; the normal modes associ-

(12 ated with the “+(—)" sign in Eq. (17) are symmetridan-

and 75 is one of the five viscosity coefficients characterizing iSYmmetrio underz— —z. The form of the layer displace-
a smecticA [10]. ment in Eq.(10) suggests that, for given|, , the layer
WhenP} =P, (P, P_,), the dynamics of the sys- displacement for a normal mode is an eigenfunction of the
ext exv

ext™ ext— . . .
tem are symmetri¢antisymmetri¢ underz— —z, and the differential equation

layer displacement is described by (u,) alone. The re- P
sponse functions for both symmetric and antisymmetric sur- M =—q2¥(q,,2) (18)
face motions are defined by Fria ‘
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FIG. 2. Graphical solution for thg,’s for di-
mensionless parameter, |;=2. The abscissa
in all cases ig),d/ 7. The three functions plotted
are g,d/(q,14)? (dot-dashed ling cot(,d/2)
(solid lineg, and —tan(q,d/2) (dashed lines
The crossings of the dot-dashed line and the solid
lines give the values ofg{"d/x for normal
modes withn even; the crossings of the dot-
dashed line and the dashed linexcept the ori-
gin) give the values ofi{" d/ 7 for normal modes

col(q,d/2), q,d/(q,1)°, tan(q, dr2)

L with n odd.
— cot(q,d/2
—-— qdiqly)
- —tan(qzd/2)
\I !
4 6
qd/n
with boundary condition BC2 5 i sin(q{"d) -2
N(a m=gl 1+(-)"—5—| . (22
d
é’l//(qL 12) 2 qz
B— —*a qiy(q..2) =0. (19 _ _ o
z=+df2 These normal modes satisfy the orthonormality condition
It is straightforward to show that these eigenfunctions form a dr2 i o
complete basis for the intervald/2<z<d/2. The apparent f_ /Zdz Ya..n:2) ¢4, ,M;2)= Omn. (23

contradiction between BC2and BC2 is discussed in Appen-

dix A. Hence, these modes can be used as a basis to expand any
In general,q, in Eq. (17) cannot be determined analyti- u(q,,zt) as

cally. However, they,’s are all real, and we can choose them

to be positive. The graphical solutions for thgs are shown

in Fig. 2. We label theq,’s for the normal modes as U(ql,z,t)=§n: u(q, ,n,t) X ¥(q, ,n;z). (24
at”(a.), n=0,1,2 ... with q{”(q,)<q"(q,)<a{”(q.) _ _ _
<. andnote that there are two normal modes associateds discussed in Appendix B, the general form for the dy-

with eachq(”) The layer displacement for normal modes is hamic correlation function of is
even(odd) underz— —z if nis even(odd. The layer dis-

placement for the normal modes with=0 is even under c(q, ,n,t)=(u(q, ,n,t)u(—q, ,n,0))
——Z ; —iw_t__; —ilw,t

To compare with the behavior of a bulk smecticrecall _ o€ . !w,e ke T
that translational invariance of the bulk system allows one to lo, —low_ Bq&“)2+ Kqu

label modes by al-dimensional wave vector. For a freely
standing smectieéx film, the boundary conditions and the
equations of motion select a set of normal modes for th‘?/vhereau
dynamics of the system. We can express the normallzegq (12).
time-independent part of the normal modes in the following
way:

(25)
w-(q, ,q") is related toq, andg{" through

In summary, we find that in common with analysis of a
liquid film, the normal modes are symmetric or antisymmet-
ric underz— —z. They also are labeled byy( ,n), and the
¥(a,,n;2)=N(q, ,n)cogqi”(q,)z] for n=0,2,4,. .. layer displacement can be treated as eigenfunctions of a dif-
(20 ferential equation. The frequencies for those normal modes

can be obtained from the poles of therface response func-
tionsin the complexw plane. As will become clear in the
next section, the difference between tho$®’s which cor-

(g, .n;2)=N(q, ,n)sin g (q,)z] forn=135..., respond to the normal modes for a finite thickness smekctic-

(21)  film and the set of numbers¢-1)=/d, n=0,1,2 ... pro-
vides a measure of the degree to which finite thickness and
where surface tension change the dynamic properties of the layer

and
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displacement. Experimentally, these effects are typically ob-
served by measuring the frequencies and the magnitude of
the autocorrelation function of the layer displacement. Layer
dynamics will be discussed further in the following section.

(30

Il. CROSSOVER OF LAYER DYNAMICS
FOR SMECTIC-A FILMS

Equation(17) shows that they,’'s of the hydrodynamic

normal modes depend only on the dimensionless parametfteé

g, l4 and the thicknesd, and they can be expressed as

1
M =5falaula). (26
Whenq, 14<1,
fo(aula)~v2l4 .,
lg |2,
fa(alg~nm1+2| —| qi|, n=123..., (27
while whenq, 1,>1,
fo(aLlg)=(n+ 1) 1— 2], n=0123....
(lqq.
(28)

For intermediatey, |4, the behavior off,(q,14) is compli-
cated and must be analyzed numerically.

A. q,14<1 regime

The dynamics of the smectic layers whegnl <1 are

dominated by then=0 modes. This can be understood by

comparing the magnitude and characteristic time scales
the correlation functions. The conditian |4<<1 is satisfied
for typical materials wherg?d<B/a~10° cm *. On the
other hand, the molecular field [Eqg. (5)] for the n=0
modes is dominated by thBd2=—B(q!")? term when
g°d<a/K;~3X 10’ cm L. Since from Eq(27) the magni-
tude ofq, satisfiesq§°)<q§“) for all n>0 whenq, 14<1,

the contribution from theBs? term. Furthermore, from Eq.
(12), one finds that the=0 modes have much longer char-
acteristic time scales than time>0 modes. Hence, fdyq,
<1, then=0 modes dominate the dynamics of the smecti
layers. Substituting)®) into Eq. (12), one finds

1 2
=

q.le

2
L

730
2

iw.(q,,q®)= 1+ 1—(

wherel .= \/7732d/8pa is instrumental in determining whether

the layer oscillations are overdamped or underdamped. Ndsy substitutingg

tice thatw- (q, ,q')) is independent of the bulk elastic con-

. 200,
|w(_°)(qi)= Tq=7o l<|w(f)(qi).
73

Since we are interested in slow modes of the system,
©)(q,)=7," provides the characteristic time for the sys-

lw’

m, and the autocorrelation function for layer fluctuations
has the form

kBTd —t/7
> e "oforlcg >1>14q, .

L

C(QL!OI)% (31)

aq

Notice thatry is independent ofy, . This particular time
scale controls the dynamics in the< qj1<lc regime, and it
arose in previous experimental, numerical, as well as theo-
retical studie$6,7]. Whenl.q, <1, then=0 normal modes
are underdampedwith decay rate 24,1.)%7,* and fre-
quency\/Za/pqu=2qllcrgl. As g, —0, the damping is
small; this is the regime in which the long-wavelength theory
and corresponding experimerits6] have been performed.
The autocorrelation function for layer fluctuations in this re-
gime is given by

kgTd
c(q,,0t)~ 5

2 cog2q, .t/ To)e_z(qi|c)2t/70
aql

(lqa, <leq, <1). (32

The behavior of then=0 eigenfunction#(q,,0;z) is
simple whenl4q, <1, namely,
z 2)

1
¥(q.,0:2)= \[a+o( Aulag

which has a very weakdependence. It has been pointed out

that the static properties of the smechidayer fluctuations

in a film with g, 14<1 arez independen{3]; here we have

shown that a similar property holds for the dynamics as well.
We have shown that the physical properties of the system

of (39

elasticity due tosurface tensiorand viscous loss character-
ized by the coefficienty;. The underdamped motion of a
CsmecticA film should not be confused with “second sound”
for smectic layers, because for long in-plane wavelength the
layer compression is negligible. In this regime, the under-
damped motion is simply the vibration of a simple fluid film
with surface tensiom. Also notice that although the magni-
tude of q{” depends on the elastic constdtthis depen-
dence does not show up in the dynamical correlation func-
tion for the hydrodynamic normal modes, as can be checked
) into Eq. (25).
To probe the crossover behavior of the film, experiments

stants; hence the dynamic behavior of the system in théave to be performed outside thel ;<1 regime so that the

g,l14<<1 regime resembles that of an ordinary fluid film.

Whenl.q,>1, then=0 normal modes are strongtyer-
dampedwith decay rates

effect of the bulk elasticity can be revealed. This can be done
by increasing the film thickness or adjusting the relevant
in-plane wave vector. Wheq, |4 increases to order unity,
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the layer structure of the system starts to play a non- e

negligible role in the system. The layer fluctuations of the T
normal modes witth>0 become comparable to the layer g !

fluctuations for then=0 modes. Hence, the dynamics of the

layers for fixedq, are no longer simply controlled by

w+(q, ,q?). The first sign of this crossover behavior can 1
be detected by exciting the=1 modes. As pointed out in o5
the study of the surface dynamics of freely standing smectic- ¢ , ,
A films [11,17], this pair of modes is similar to the so-called > ) / 0.075
peristaltic mode for a soap film. However, the characteristic =054
time scales of these modes strongly depend on the elasticity " t (ms)
of the smectic layers; hence, the dynamic properties of these
modes actually reveal the difference between a smectic film -log (3)
and a soap film. The possibility of surface light-scattering 0
experiments for probing these normal modes is also dis-
cussed in Ref[11].

FIG. 3. Dimensionless dynamic correlation function
C(q, ,n,t)=c(q, ,n,t)/c(q,,0,0) forn=0,1,2,3. The material pa-
rameters are chosen to loe=10 um, B=2.5x10" dyn/cn?, K,

B. q,l4>1 regime =10"° dyn, =30 dyn/cm,p=1.0 g/cn¥, 73=1.0 poise, andj,

is chosen such that™'=(q, |4) 2=20000, 2000, 1, and 0.1, re-

In the opposite limit,q, 14>1, theq,’s for all normal X . i ! .
P dila 4z spectively. logé) in the figure is the natural logarithm.

modes can be approximated by a single expression(2Bj.
One finds that, in this limit, the eigenfunctions for the normal
modes, given in EqE20) and(21), vanish on both free sur- dimensionless parameterl 4¢,) 2=B/eq?d is 20 000,
faces as @, 14) “*—0. This means that, in this limit, the 2000, 1, and 0.1, respectively. Wheld,) ~2=20000, the
layer displacement is not affected by the surface tension. Theormal modes withn>0 are negligible, anch=0 normal
dynamics of the layers whem, | 4>1 is similar to that of a modes are underdamped, as one can checkagthat=5/12

bulk smecticA with thicknessd, except very close to the free <1. For (4q,) 2=2000, then>0 normal modes are still
surfaces. This can be seen from the fact thatqiiés take  negligible, but then=0 normal modes are overdamped with
values approximately equal tm¢ 1)7/d, with a finite-size @ decay which is not a single exponential. This occurs when
correction. When A(qun)hr Klqj)/ngqj<1, the motion the two time scale_s are clp_se to each other, as illustrated in
of the layers is stronglpverdampedFor giveng(™ andg, ,  Fig- 4 near the point of critical damping. Folyg,) =1,

there are two modes. The slow one, which corresponds t§€ normal modes witm>0 can be observed; this is the
layer undulation, has crossover regime. Fol{g,) “=0.1, the contribution from

bulk elasticity is sufficiently large that the dynamic correla-

Bq{"?+K,q* tion functions for normal modes with™>0 are easily seen in
iw_(q, ,q")= 5 the figure. Similarly to the undulation mode in bulk systems,
LERT all normal modes decay exponentially. This is the over-
o g ime. .
[(n+1)7r]2+)\2d2qf B damped limit of theg, [4>1 regime. The actual, values in
~ > (970)
NdQ]
>Ndqi(gr) >t (34)

500

where we have used the fact thaﬂ~|§ andg~0O(1) for
typical materials. The fast decay mode now corresponds tc 400
the diffusive mode fow,. Notice that, similar to bulk sys-
tems[ 1], the dominant fluctuations in this regime come from
the modes wittB(q™)2~K,q?, i.e.,n~\dg?/m>1; the
boundary conditions have little effect on theependence of
these modes, and their dynamics axerdamped

To study the dynamics of the smec#cfilm in the g, |4
>1 regime for typical laboratory materials, we neefjd 100 ¥
>B/a~10° cm L. Ford~10"2 cm, which can be achieved
easily, the momentum transfer in thg plane should be at
least of order 1®cm ™!, which can also be achieved. 0 05 08 07

The crossover of the dynamics for the system is illustrated @
in Fig. 3, where the normalized dynamic correlation func- G, 4. pecay rates for normal modes with=0 in the q, I
tions C(q, ,n,t)=c(q. ,n,t)/c(q.,0,0) for normal modes <1 regime. The dimensionless wave vector is definedQas
with n=0,1,2,3, are shown for a smecticfilm with thick- =(q, d. The material parameters are chosenjas-1.0 P, p=1.0
nessd=10 um, and typical elastic coefficients and viscosi- g/cn?, d=10 um, and =30 dyn/cm. When the decay rates
ties. The in-plane wave vectay, is chosen such that the merge, the system undergoes underdamped motion.

300

Relin] (kHz)

200
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the figure change over many orders of magnitude. Thus, ex- TABLE Il. Asymptotics of the autocorrelation function.
perimentally probing this entire figure may require different : _
scattering probes. Dominant Asymptotic
Condition fluctuations behavior ofg
IV. SMECTIC ORDER-PARAMETER ro<ly, t<r, Qlg>1, n>1 Eq. (40)
AUTOCORRELATION FUNCTION and 7+ d/25 12/
-1 -1 —

As a recent numerical study sho@d, the crossover dy- la<ri<lcandt=m lc*<q,<lg”, n=0  Eq. (41):
namics in a freely standing smectcfilm can also be ob- 7o a”dr¢<' q.le<1,n=0 Eq-(45)a
served in the smectic order-parameter autocorrelation fund/7o>(r. /1c)? . le<1,n=0 EOI-(45)a
tion. For a thermotropic smecti& [1,2], le<<r, andt<r, q.lc<1,n=0 Eq.(46)

(1) :po+[<¢l>eiqoz+ c.cl, (35) 8z,,2, dependence ignored.

where($1)=|{¢,)|e 9" is the dominant order parameter those withn>1, the boundary condition is not important as
for the thermotropic smectid- phase andy, is essentially long as bothr; andr, are sufficiently away from the free
the inverse smectic-layer thickness. The autocorrelatiosurfaceq21]. Therefore,g(ry,rpt) in this limit can be ap-

function for the dominant order parameter is proximated by
(@1(r1,1) ha(r2,0)) =[(p1)|?e 91120, (36) 2 dq?
rq,fo,t)~
where 9(raro lgt(2m)?
rq,r t)_q—é<[u(r t)_u r 0)]2> X[C(qL,n,O)_C(qJ_,n,t) eiqL'rL+i(n+1)W2/d]!
g( 1:12» - 2 1 ( 2y (39)
B ) ) wherez=|z;—
_§[<U (r1,0)+(u(rz,t)) ditions in the z direction to simplify the expression. The
asymptotic behavior of the above expression is the same as
—2(u(ry,tu(ry,0))]. (37 that for a bulk systenfi6], namely,

We shall refer to the first and second terms on the right-hand
side of the above equation as tleal part of g and the third
term as thenonlocal part Although the translational invari-  g(r1,f>,t)~¢ #inz,  z/d>r2/xd and zid>t/r,
ance in thez direction is broken and the local part depends nint, z/ld>r?/\d and t/7y>7/d,

on z; and z,, only the contribution from the nonlocal part (40)
shows true correlation between the layer fluctuations at two

different space-time points. The local part will provide thewherenszTqﬁl&r\/B_Kl.

27lnr,, r?/xd>z/d and r?/xd>t/r,

“counterterms” for some of the calculations to follow. (i) Whenly<r, <l, andt=<r,, the relevant modes for
It is convenient to expres@(ry,t)u(r2,0)) in terms of  the nonlocal part ofy haven=0 and|_‘<q, <I;*, and
the normal modes, they are independent af andz,. Thez; andz, dependence

comes from the local part @f only; hence, we will ignore it.

. Similarly to (i), there is cancellation of the contributions of

u(rq,tyu(r,,0 ——C n,t iq g
(u(ra,Hu(r20))= 2 f (a. e q,!.<1 modes between the nonlocal and local partgy.of

From Eq.(31), ther, - and t-dependent part of can be

X(ay,nzy)(q, ,n;zp), expressed a22]
rp=riy —ry . (389 -1 g2
qof d a kBT (_‘]_—e_t/TOeiqui)
Each term in the local part af has the same form as the It (27)? 2aqL

above but withr, =0, t=0, and ¥(q, ,n;z;)¥(q, ,n;z) "
replaced byy?(q, \N;Z1(2)). As will be shown below, the ~ kBTqOe—t/m(
normal modes which dominate thnlocal part of g also A
control the asymptotic behavior gf as summarized in Table

Il. In the remainder of this section, we discuss entries in thigvhere A, is constant. This result indicates that the order-
table and compare with existing numerical wdiK. parameter correlation function behaves a&"V with a time-

(i) Whenr, <ly, t<7, the nonlocal part of is domi-  dependent exponer’yt(t)=exp(—t/7-o)kBTcﬁ/41-ra. This par-
nated byg, |41 modes. The, [4<1 partingin this short-  ticular time-dependent power-law decay has been found
time limit can be approximated by its value &0, r; theoretically[6] within a discrete model and also numeri-
=0, and the layer fluctuations are dominated by mke0 cally [7].
modes, which are independentafandz,. Hence, there is (i) When t>r7g, r, <l., modes withq,|:>1 in the
cancellation with their contribution to the local part. Since nonlocal part ofg all decay away. Similarly tgii), from Eq.
the dominant fluctuation fog,l14>1 modes comes from (32) one finds the | - andt-dependent part d,

+Ag, 41

r ~
|n|—l+'y

c
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q% -1 d2q  keT additional numerical and/or experimental studies are re-
> ¢ 5 >[1—cog2q,lt/o) quired to find the interesting, andt dependence of the
0 (2m)° 2aq7 autocorrelation function and especially the length, which

><exp(—2qf|§t/70)exp(iql )] characterizes the long-wavelength underdamped dynamics.

_ kgT qg

dra

[1o(2t/ 7o) +11(2t/ 70,1, /1), (42) V. CONCLUDING REMARKS

The layer dynamics of a freely standing smedidH{m
where have been determined by analyzing the response functions
for the surface displacement. By determining the positions of
1 1-—cosQt e Q% the poles of the response functions in the compbeglane,
|o(t)=f dQT' (43)  we find not only the frequencies but also the spatial configu-
0 rations for the hydrodynamic modes of the system. The fact
1 , 1—J4(QR) f[hatu and v, are two nqnseparable hydrodynamic variabl_es,
|1(t,R):f dQcosQt e @t——= - (44) ingeneral, is reflected in the form of the dynamic correlation
0 Q function foru.

Whengq, 14<<1, the internal structure of the layers is not
important for the system. For fixegl, , one pair of normal
modes dominates the statics and dynamics of the system.
Furthermore, the layer fluctuations and the characteristic fre-

Using the appropriate asymptotic behavior Igf{(t) and
[,(t,R) provided in Egs.(C3) and (C7), one finds that to
order (, /1.)?, ther, - andt-dependent part df is given by

KT o ¢ 2 quencies for these important normal modes have essentially
5" % — L 7o no dependence on the elasticity of the smectic layers, i.e.,
Ama 7o 8I§ 2t only surface tension and viscosity are important. To extract

information on the internal structure of the system, i.e., the
i/ smectic layers, it is necessary to excite other normal modes.
+0(e ), As discussed in Ref11], exciting then=1 modes provides
information on the crossover behavior of the system from a
(45 guasi-two-dimensional system to a three-dimensional sys-
tem. This can be done by adjusting the experimental param-
eters such thaq, | 4 is of order unity. The mode structure for
the system in the regimg, |41 is similar to that of bulk
S%ystems. However, the characteristic time scales for the hy-
drodynamic modes will now acquire surface and finite thick-
ness corrections as well.
The dynamic crossover behavior can also be found in the

X

Tt t
_ —t/27g H
1 \/—ZTOe erfl( \/—27_0

where erf(x) is defined in Eq(C8). The logarithmict de-
pendence in the case of =0 has been seen numericdlfj,
while the more complicated time dependence of the leadin
r, term has not been reported.

(iv) Whenl.<r, , the dominant modes in the nonlocal
part of g are n=0 modes withq,|,<1. Ther,- and
t-dependent part af is also provided by Eq42). Thez; (,)
dependence is ignored as(iii). Two asymptotic forms fol-
low.

(@ t/mo>(r, /1)>>1. Using Egs.(C3) and (C7), one
finds that ther, andt dependence of is the same as case

kBqu
Ao

smectic order parameter autocorrelation function. In general,
for q,14>1, t/7p<<1 this autocorrelation function is similar
to a bulk smecticA system. For long wavelength or large
time, the behavior is controlled bly, I, and 75, and is
similar to an ordinary fluid film. We suggest that further
(if). i experimental or numerical studies will reveal some interest-
(b) t< 7. From Eqs.(Ql) qnd(CS), one finds that the, - ing time orr; dependence of the autocorrelation function.
andt-dependent part of is given by To summarize, we have explored the dynamic properties
3 of a freely standing smectig-film in the linear regime. It is
Inr—l+t ‘ lﬂcos(r—i— 3_77 +O(12). (46) shown that existing experiments were performed in the limit
le er I 4 where only the two-dimensional character of the film can be
detected. Future experiments on the dynamical correlations
Thet=0 behavior in this case has been verified by the nuof the smectic layers may reveal the crossover behavior of
merical work in[7]. However, notice that the time-dependentthe system to a regime in which layer elasticity begins to
part oscillates inr; with a characteristic length,, which  play a role. The behavior of the autocorrelation function for
does not appear in the postulated scaling form of R&f.in  the smectic order parameter is also discussed and compared
which ther,>1. regime is not included in the numerical with an existing numerical study. Our analysis provides the
calculation of the order-parameter correlation functiag]. basis for the numerical results and provides a clear concep-
We suggest that further study of the autocorrelation functiortual picture showing the need for additional studies to ex-
of the smectic order parameter will reveal this importantplore interesting behavior. Finally, our work also provides
length. the formulation for a future theoretical study of the dynamics
We have shown the asymptotic behavior of the smectiof a freely standing smectig- film far from equilibrium,
order-parameter correlation function in various regimes. Invhere experiments show behavior which is drastically differ-
casedi) and(ii), the behavior agrees with existing numerical ent from that of a bulk systefi®]. The effect of finite thick-
approaches. Although the =0 case iniii) and(iv),(&) as  ness and surface tension will have to play a central role in a
well as thet=0 case in(iv),(b) are discussed in Ref7], theory which describes such dynamical behavior.
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nation of the normal modes discussed in the text and satisfies
BC2' [Eq. (19)]. Whenu,, is included, the permeation force
Bou/dz vanishes on the free surfaces due to the existence of
We discuss permeation processes in free-standingp. This has been noted in the literatfe8, 19 but has not
smecticA films in this appendix. We look for a solution of been discussed in previous studies of statics and dynamics of
the equations of motion with boundary conditions and exterfree standing smectic-A filmgs3,6,7).
nal forces given in Sec. Il. In the long-wavelength, low-
frequency limit[13] the solution is of the form

APPENDIX A

APPENDIX B

U=Ugt+Up, (A1) In this appendix we calculate the dynamic correlation

functions foru andv,. We consider thei,, part only; theu,
part simply corresponds to the permeation mode discussed in
Ugi(r 1) =Ug(q, ,®)c0$a,(q, ,w)z]eld L-iot the literature[1,10]. Our starting point is the equations of

_ _ motion, i.e., Eqs(3) and(4), and the dynamics of the normal
+Ua(q, ,@)sifg,(q, ,w)z]e'd Tatet (A2)  modes labeled byq ,n) are considered. Eliminating the

. . . . . ressure via the incompressibility condition, we find that
is the approximate solution used in the text. It is mdependenﬁl P y

£ th i tant. Th q tributi ere are two diffusive modes associated witrandv, , but
ot the permeation constant. The second contribution v, andv, decouple fronv, andu[2]. Neglecting permeation

up(r’t):[u;(qL)e+(1+i)p(qL)(z—d/Z)+C.c.]eiqrri—iwt [20], the equations fov, andu can be expressed as

where

+[UE(qL)e_(l+i)p(ql)(z+d/Z)+C.C.]eiqi'ri_iwt

A g [u 0 1
O A T
contains an inverse lengtip(q,)=+/q,/2({pn3) "% which z z
characterizes the decay of permeation away from the free
surfaces. In typical materialp(q,)>q, >q, in the low-  Where
frequency, long-wavelength regim&3]. The amplitudesu;
contain the contributions from permeation and are related to 1 5
Ug through the full boundary conditions. D= 5 el (B2
From Egs.(9) and (7) we find that|u,|<[ugl, i.e., the
contribution of permeation to the layer displacement is small o
[11]. Then Eq.(6) leads to represents the dissipative part and
I ~[Uell = +ai2- (A4) 1
R=— (Bq{"?+Kyq}) (B3)
It is straightforward to show that the elastic free energy is p
2
F— 1 f dv B((?—u 2 LK 92_“ <72_U> ] represents the reactive part. We have used the facgffat
2 0z H oox2 ay? <(, for all nin the regime of our calculation to simplify the
_ _ expressions. The eigenvectors of the above matrix equation
1 - ag'\? [al'\? are
203 st a((«%() +(ﬂy) }
1 &up 2 AUg 2 (92U6| (92U6| z b, = 1 ( 1 ) B4
T2 f v B(E +B( Jz ) +K1( PNV ) T Vitlie.(q, g™ | Ties,a”)” 4

1 . (9U6| 2 &Ue| 2 . . . (n) . .
+ > st @ + . (A5)  with eigenvalues —iw.(q, ,q9;”) given in Eq. (12.
i=+- z==+di2

28 ay Straightforward algebra leads to the following relation:

( u(t)) 1 ( [iw e ' "~iw_e Ju(0)+[e '“-'~e '“+Jv,(0)
(B5)
V(1)

T, 0. | —w,0 [elort—e o u(0)+[iw. e —iw_e 1 v,(0))
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where we used simplified notationy.=w.(q, ,q&”)), Next we _examine the asymptotic behavior Iq(t,R_),
u(t)=u(q, ,n,t), v,(t)=v,(q,,n,t), etc. From this one Wwhich is defined in Eq(44)._WhenR<1, t<1, expanding
concludes that the dynamic correlation function tois I1(t,R) aroundR=0, t=0 yields
2 2
(u(q,n,t) u(=q.,m,0)) Il(t,R)=%—%+O(t2,R4). (C4)
iw,e - t—jp_e ot )
=6m P (lu(q, ,n,0)|%) WhenR>1, t<1, expanding 4(t,R) aroundt=0 leads to
H —lw_t__; —iw,t ! 1_Q2t 2
iw, e ' '—iw_e 'Y+ kgT Il(t,R)zf dQ [1-Jo(QR)]+0O(t9)
= Onm . . 2 +.  (B6) 0 Q
loy—lo- Bo, ™"+ Kaa,
_ _ _ _ ~ 1 Ji(R) )
as given in Sec. Il. The calculation of the correlation func- ~y+INR+| =5+ ——[t+0O(19)
tion for v, is similar to that foru.
IR 1 2 R 3w
APPENDIX C ~ytinREb =5 VECO =B
We discuss some asymptotic behavior of the integrals (C5)
lo,14 in this appendixly(t) is defined in Eq(43). In thet
<1 limit, expanding around=0 to lowest order, one finds where
t ~ 1dx »dx
Io(t):§+0(t2). (C1 Y= on[l_JO(X)J_L + Jo(x)=-0.116, (CE)
Whent>1, one reexpresses E@3) as andJ, is the Bessel function of the first kind. The identity
d(xJ;(x))/dx=xJp(x) and limit J;(x)=~2/7xcogx
()= 1d 1— (cosx)exp( —x°/t) —3m/4] for x>1 have been used. WhesR? andt>1, a
o()= o X X change of variables yields
tdx [t (cosx)exp —x2/t Edx xR
+ [ [l R ey R [T eostxbext—x) 1—%(—”
1 X 1 X 0o X \/f

The first and the third terms on the right-hand side tend to R?[1-e lcost Jme ¥ [\t
constants in the largefimit, ~7 2t ah erfi| =] |, (€D
_ 2 ,
fldxl (cosx)exp(—x°/t) ~0.24 where the Bessel function has been expanded and
X L
° erfi(x)=erf(ix)/i. (C8)
t  (cosx)exp—x2/t . . .
_f dx( Jexu )~0,34, t>1. For largex using standard manipulations on the error func-
1 X tion of a complex argument, one has
Hence erfi (x) ~expx2)[ (LX) + (1/2{mx3) + O(x 4]
lo(t)~0.58+Int, t>1. (C3)  [24]
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