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Layer dynamics of freely standing smectic-A films

Hsuan-Yi Chen and David Jasnow
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 27 August 1999!

The dynamics of freely standing thermotropic smectic-A films are studied in the isothermal, incompressible
limit via a continuous hydrodynamic description. The role of permeation in the films, the structure of the
hydrodynamic normal modes, and the form of the autocorrelation functions for the smectic layer and order-
parameter fluctuations are discussed. We find two characteristic lengthsl d5Aad/B and l c5Ah3

2d/8ra asso-
ciated with the dynamic behavior of the system, wherea is the surface tension,d is the film thickness,B is the
elastic constant for layer compression,h3 is the layer sliding viscosity, andr is the density of the liquid
crystal. The crossover from filmlike to bulklike behavior is controlled byl d alone; the crossover from over-
damped to underdamped dynamics when the in-plane length scale is large compared tol d is controlled byl c

alone.

PACS number~s!: 61.30.Cz, 68.15.1e, 83.70.Jr
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I. INTRODUCTION

A three-dimensional smectic-A phase has a layered stru
ture with one-dimensional order along the layering direct
and fluidlike behavior within the layers. Choosing thez axis
to be the symmetry-breaking direction, to linear order
bulk elastic free-energy density is given by@1,2#

f b5
1

2 H BS ]u

]zD 2

1K1S ]2u

]x2
1

]2u

]y2D 2J , ~1!

where u(r ,t) is the layer displacement,r5(x,y,z), and B
andK1 are, respectively, the layer compression and und
tion elastic moduli. Since a uniform rotation around any a
in the xy plane costs no energy, there is no (]u/]x)2

1(]u/]y)2 term in the elastic energy. As a result, the lay
displacement fluctuations diverge logarithmically with t
size of the system, and the smectic-A phase is at its lower
critical dimension. However, the divergence is sufficien
weak that finite-size effects stabilize laboratory samples@1#.

With their high degree of uniformity and easily controlle
thickness, freely standing smectic films are often used
study the finite-size and boundary effects for systems at t
lower critical dimensions. Experimental and theoretical st
ies on the static@3–5#, dynamic@6–8#, and off-equilibrium
@9# properties of freely standing smectic-A films show very
interesting behavior; some features are drastically differ
from bulk smectic systems, while some represent crosso
from two-dimensional to three-dimensional behavior.

In this paper we introduce a continuum theory for t
hydrodynamics of athermotropicsmectic-A film in the iso-
thermal, incompressible limit based on the linear hydro
namic theory constructed by Martinet al. @10#. Our study
provides a finite-thickness counterpart to the hydrodyna
theory for bulk smectic-A systems. We clarify the appropr
ate boundary conditions for the equations of motion, disc
the role of permeation close to the free surfaces, compare
structure of hydrodynamic normal modes with that of bu
systems, and provide a theoretical picture for the dyna
crossover behavior of a freely standing smectic-A film from
PRE 611063-651X/2000/61~1!/493~11!/$15.00
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a thin film, with properties similar to an ordinary fluid film
to a three-dimensional system with layer structure.

In Sec. II we briefly review the linear-response functio
of the surfaces of a smectic-A film @11#. We show that the
dynamic properties of the smectic layers in a freely stand
film can be extracted from the surface response functio
Since the layer displacement for a smectic-A film has to
satisfy certain boundary conditions on the free surfaces,
normal modes for the dynamics of the layers depend on b
surface and bulk properties.

The crossover of the smectic-layer dynamics from fil
like behavior to bulklike behavior is discussed in Sec. I
Two lengths,l d5Aad/B and l c5Ah3

2d/8ra with l c@ l d ,
are shown to characterize the dynamics of the system, w
a is the surface tension,d is the thickness of the film,r is the
density, andh3 is the in-plane shear viscosity@10#. We em-
phasize that when the in-plane wavelength (;q'

21) is large
compared tol d , the behavior of the system is similar to a
ordinary liquid film, and whenq'l c!1, the layer dynamics
of the system is underdamped. The characteristic time s
for a long in-plane wavelength (q'l d!1) is shown to be
t05h3d/2a. The effects of the smectic-layer structure c
be found in short-time (t!t0), short-wavelength (q'l d
@1) behavior. This is supported by a recent study of
smectic order-parameter autocorrelation function for fr
standing smectic-A films @7#, where a scaling form for the
correlation function is proposed and studied numerica
with a discrete model. As discussed in Sec. IV, our co
tinuum theory provides the conceptual background for s
behavior with a clear picture based on the behavior of
hydrodynamic normal modes.

In Sec. V we summarize results and add concluding
marks. Some additional details on permeation near the
faces and the calculation of the dynamic correlation fu
tions are provided in Appendixes A, B, and C, respective

The material parameters, characteristic lengths, t
scales, as well as dimensionless numbers are listed in Ta
with their definitions and typical values.

II. HYDRODYNAMIC NORMAL MODES
OF A FREELY STANDING SMECTIC- A FILM

We consider a freely standing smectic-A film which ex-
tends fromz5d/2 to z52d/2 in the vertical direction and is
493 ©2000 The American Physical Society
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TABLE I. Parameters and magnitudes.

Parameter
definition Physical meaning Magnitude

B layer compressibility 2.53107 dyn/cm2

K1 layer undulation modulus 1026 dyn
r smectic-A density 1 g/cm3

h3 in-plane shear viscosity 1P
a surface tension 30 dyn/cm

g a/AK1B O(1)
l AK1 /B penetration length 1027 cm
d smectic-A film thickness
l d Aad/B length which separates l d;Ald

5 Agld filmlike and
bulklike behavior

l c Ah3
2d/8ra length which separates l c@ l d

underdamped and overdamped (l c / l d;50)
dynamics inq'l d!1
regime

t0 h3d/2a lifetime for overdamped
n50, q'l d!1 modes
f

ct
ce

lib

m

rc

i

em-
the

e
-
by

lar
of infinite extent in thex andy directions. The geometry o
the system is shown in Fig. 1, which showsz1 (2) as the
displacement of the upper~lower! surface from its equilib-
rium position. In the absence of external fields, the sme
layers are always aligned and parallel to both free surfa
In this section we first briefly review previous results@11# on
the derivation of the linear-response function for the equi
rium surface fluctuations of a freely standing smectic-A film
in the low-frequency, long-wavelength regime@13,14#, and
then extend these results to the structure of hydrodyna
normal modes of the system.

Suppose the system were perturbed by external fo
with fixed in-plane wave vectorq' and frequencyv on both
upper and lower surfaces, i.e.,

Pext
1 ~r' ,t !5Pext

1 ~q' ,v!eiq'•r'2 ivt,

~2!

Pext
2 ~r' ,t !5Pext

2 ~q' ,v!eiq'•r'2 ivt.

We look for the linear-response functions of the surfaces
the regime of weak external forces.
ic
s.

-

ic

es

n

In the absence of topological defects, under constant t
perature and assuming incompressibility, to linear order
system satisfies the equations of motion@1,2#

r
]v i

]t
52] i p1] js i j8 1hd iz , ~3!

]u

]t
5vz1zph, ~4!

wherev i is the i th component of the velocity field, and th
pressure,p, is actually a Lagrange multiplier for the incom
pressibility condition. The viscous stress tensor is denoted
s8 @10#, zp is the permeation constant, and the molecu
field h in linear theory is defined by

h[B]z
2u2K1]'

2 ]'
2 u5B~]z

22l2]'
2 ]'

2 !u, ~5!

wherel5AK1 /B is the penetration length@1# and ]'
2 5]x

2

1]y
2 . In Eq. ~3! we sum on repeated indices, and] j

5]/]xj .
g

b-
FIG. 1. Schematic of a freely standin
smectic-A film of thicknessd. The y axis points
into the paper. The dotted lines are the equili
rium positions of the free surfaces.
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On the free surfaces the system has to satisfy the foll
ing boundary conditions.

BC1. The velocity of the free surfaces is the same as
normal component of the liquid crystal velocity on the su
faces.

BC2. For free surfaces the normal component of the p
meation force should vanish@11#.

BC3. The force acting on the system is continuous acr
the free surfaces.

The boundary conditions lead to the following equatio
for the system:

]z6

]t
5@vz#z56d/2 , ~6!

F]u

]zG
z56d/2

50, ~7!

@] ivz1]zv i #z56d/250, i 5x,y, ~8!

F6S 2p12h3

]vz

]z
1B

]u

]zD2a“'
2 z62Pext

6 G
z56d/2

50.

~9!

Solving Eqs.~3! and ~4! with these boundary conditions
one finds that, in the presence of the driving forces w
givenq' andv, there are four differentqz’s. One of them is
associated with the diffusive motion ofvx and vy , and is
decoupled from the motion ofu and vz ; hence, it is irrel-
evant for the calculation of surface response functions~see
BC1!. Another two values ofqz are associated with perme
ation, and these contributions to the layer displacement
small ~see Appendix A!. The last of theseqz values domi-
nates the contribution to the smectic-layer displacem
henceu can be approximated by

u~r ,t !5uS~q' ,v!cos@qz~q' ,v!z#3eiq'•r'2 ivt

1uA~q' ,v!sin@qz~q' ,v!z#3eiq'•r'2 ivt,

~10!

whereuqzu!q' and, in general,qz(q' ,v) is complex under
the conditions considered@13#. It is determined by the solu
tion of the following with Reqz.0:

iv5 iv6~q' ,qz!, ~11!

where

iv6~q' ,qz!5
h3q'

2

2r S 16A12
4r

h3
2q'

4 ~Bqz
21K1q'

4 !D ,

~12!

andh3 is one of the five viscosity coefficients characterizi
a smecticA @10#.

WhenPext
1 5Pext

2 (Pext
1 52Pext

2 ), the dynamics of the sys
tem are symmetric~antisymmetric! under z→2z, and the
layer displacement is described byuS (uA) alone. The re-
sponse functions for both symmetric and antisymmetric s
face motions are defined by
-

e
-

r-

ss

s

h

re

t;

r-

zS~q' ,v!5XS~q' ,v!@Pext
1 ~q' ,v!1Pext

2 ~q' ,v,!#,

~13!

zA~q' ,v!5XA~q' ,v!@Pext
1 ~q' ,v!2Pext

2 ~q' ,v,!#,

where

zS(A)5
1

2
~z16z2!. ~14!

A calculation from the continuum hydrodynamics leads
the following expressions for the response functions@11#:

XS5
1

2

1

aq'
2 2Bqz~q' ,v!tan@dqz~q' ,v!/2#

, ~15!

XA5
1

2

1

aq'
2 1Bqz~q' ,v!cot@dqz~q' ,v!/2#

.

~16!

It appears that permeation processes have no contribu
to the dynamics of the surfaces in the regime@13# where our
analysis is done. However, the solution foru(r ,t) in Eq. ~10!
does not strictly satisfy BC2. This means that the contrib
tion from permeation enables the system to satisfy
boundary conditions@12# but otherwise has little signifi-
cance. The role of permeation in the dynamics of the sys
is discussed in further detail in Appendix A.

The response functionsXS(A) have been derived as func
tions of the in-plane wave vectorq' and frequencyv of the
applied external forces. One can also definev in the com-
plex plane; then the poles of the response functions prov
the natural frequencies of the surface fluctuations in the
sence of driving forces@2#. In linear theory these poles als
reveal the frequencies of layer displacement. Each pole in
complex v plane corresponds to a hydrodynamic norm
mode associated with the layer displacement. Since we
not interested in the dynamics ofvx andvy , which decouple
from the dynamics ofu and vz , these poles provide the
information of interest.

Defining dimensionless parameterg5a/AK1B @15# and
characteristic lengthl d5Aad/B5Agld;Ald, one finds
for given q' , that the normal modes satisfy the followin
equation:

qzd56~q'l d!2FcotS qzd

2 D G61

. ~17!

Thus thez dependence of the normal modes is determin
and the frequencies of the normal modes are determine
turn by Eq.~11!. One also finds that the normal modes ha
definite symmetry underz→2z; the normal modes assoc
ated with the ‘‘1(2)’’ sign in Eq. ~17! are symmetric~an-
tisymmetric! underz→2z. The form of the layer displace
ment in Eq. ~10! suggests that, for givenq' , the layer
displacement for a normal mode is an eigenfunction of
differential equation

]2c~q' ,z!

]z2
52qz

2c~q',z! ~18!
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FIG. 2. Graphical solution for theqz’s for di-
mensionless parameterq'l d5A2. The abscissa
in all cases isqzd/p. The three functions plotted
are qzd/(q'l d)2 ~dot-dashed line!, cot(qzd/2)
~solid lines!, and 2tan(qzd/2) ~dashed lines!.
The crossings of the dot-dashed line and the so
lines give the values ofqz

(n)d/p for normal
modes with n even; the crossings of the do
dashed line and the dashed lines~except the ori-
gin! give the values ofqz

(n)d/p for normal modes
with n odd.
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with boundary condition BC28:

FB
]c~q' ,z!

]z
6a q'

2 c~q' ,z!G
z56d/2

50. ~19!

It is straightforward to show that these eigenfunctions form
complete basis for the interval2d/2,z,d/2. The apparent
contradiction between BC28 and BC2 is discussed in Appen
dix A.

In general,qz in Eq. ~17! cannot be determined analyt
cally. However, theqz’s are all real, and we can choose the
to be positive. The graphical solutions for theqz’s are shown
in Fig. 2. We label theqz’s for the normal modes a
qz

(n)(q'), n50,1,2, . . . with qz
(0)(q'),qz

(1)(q'),qz
(2)(q')

, . . . , andnote that there are two normal modes associa
with eachqz

(n) . The layer displacement for normal modes
even ~odd! underz→2z if n is even~odd!. The layer dis-
placement for the normal modes withn50 is even underz
→2z.

To compare with the behavior of a bulk smecticA, recall
that translational invariance of the bulk system allows one
label modes by ad-dimensional wave vector. For a free
standing smectic-A film, the boundary conditions and th
equations of motion select a set of normal modes for
dynamics of the system. We can express the normal
time-independent part of the normal modes in the follow
way:

c~q' ,n;z!5N~q' ,n!cos@qz
(n)~q'!z# for n50,2,4, . . .

~20!

and

c~q' ,n;z!5N~q' ,n!sin@qz
(n)~q'!z# for n51,3,5, . . . ,

~21!

where
a

d

o

e
d

N~q' ,n!5A2

dS 11~21!n
sin~qz

(n)d!

qz
(n)d

D 21/2

. ~22!

These normal modes satisfy the orthonormality condition

E
2d/2

d/2

dz c~q' ,n;z!c~q' ,m;z!5dmn . ~23!

Hence, these modes can be used as a basis to expan
u(q',z,t) as

u~q' ,z,t !5(
n

u~q' ,n,t !3c~q' ,n;z!. ~24!

As discussed in Appendix B, the general form for the d
namic correlation function ofu is

c~q' ,n,t ![^u~q' ,n,t !u~2q' ,n,0!&

5
iv1e2 iv2t2 iv2e2 iv1t

iv12 iv2

kBT

Bqz
(n)21K1q'

4
,

~25!

wherev65v6(q' ,qz
(n)) is related toq' and qz

(n) through
Eq. ~12!.

In summary, we find that in common with analysis of
liquid film, the normal modes are symmetric or antisymm
ric underz→2z. They also are labeled by (q' ,n), and the
layer displacement can be treated as eigenfunctions of a
ferential equation. The frequencies for those normal mo
can be obtained from the poles of thesurface response func
tions in the complexv plane. As will become clear in the
next section, the difference between thoseqz

(n)’s which cor-
respond to the normal modes for a finite thickness smectiA
film and the set of numbers (n11)p/d, n50,1,2, . . . pro-
vides a measure of the degree to which finite thickness
surface tension change the dynamic properties of the la
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displacement. Experimentally, these effects are typically
served by measuring the frequencies and the magnitud
the autocorrelation function of the layer displacement. La
dynamics will be discussed further in the following sectio

III. CROSSOVER OF LAYER DYNAMICS
FOR SMECTIC- A FILMS

Equation~17! shows that theqz’s of the hydrodynamic
normal modes depend only on the dimensionless param
q'l d and the thicknessd, and they can be expressed as

qz
(n)5

1

d
f n~q'l d!. ~26!

Whenq'l d!1,

f 0~q'l d!'A2l d q' ,

f n~q'l d!'npF112S l d

np D 2

q'
2 G , n51,2,3, . . . , ~27!

while whenq'l d@1,

f n~q'l d!'~n11!pF12
2

~ l dq'!2G , n50,1,2,3, . . . .

~28!

For intermediateq'l d , the behavior off n(q'l d) is compli-
cated and must be analyzed numerically.

A. q'l d!1 regime

The dynamics of the smectic layers whenq'l d!1 are
dominated by then50 modes. This can be understood
comparing the magnitude and characteristic time scale
the correlation functions. The conditionq'l d!1 is satisfied
for typical materials whenq'

2 d!B/a;106 cm21. On the
other hand, the molecular fieldh @Eq. ~5!# for the n50
modes is dominated by theB]z

252B(qz
(0))2 term when

q'
2 d!a/K1;33107 cm21. Since from Eq.~27! the magni-

tude of qz satisfiesqz
(0)!qz

(n) for all n.0 when q'l d!1,
one finds thatc(q',0,0)@c(q' ,n,0) for all n.0 from Eq.
~25!, and the molecular field in this regime is dominated
the contribution from theB]z

2 term. Furthermore, from Eq
~12!, one finds that then50 modes have much longer cha
acteristic time scales than then.0 modes. Hence, forl dq'

!1, then50 modes dominate the dynamics of the smec
layers. Substitutingqz

(0) into Eq. ~12!, one finds

iv6~q' ,qz
(0)!5

h3q'
2

2r
F16A12S 1

q'l c
D 2G , ~29!

wherel c5Ah3
2d/8ra is instrumental in determining whethe

the layer oscillations are overdamped or underdamped.
tice thatv6(q' ,qz

(0)) is independent of the bulk elastic con
stants; hence the dynamic behavior of the system in
q'l d!1 regime resembles that of an ordinary fluid film
When l cq'@1, the n50 normal modes are stronglyover-
dampedwith decay rates
-
of
r

.

ter

of

c

o-

e

iv1
(0)~q'!5

h3q'
2

r
,

~30!

iv2
(0)~q'!5

2a

h3d
[t0

21! iv1
(0)~q'!.

Since we are interested in slow modes of the syste
iv2

(0)(q')[t0
21 provides the characteristic time for the sy

tem, and the autocorrelation function for layer fluctuatio
has the form

c~q',0,t !'
kBTd

2aq'
2

e2t/t0 for l cq'@1@ l dq' . ~31!

Notice thatt0 is independent ofq' . This particular time
scale controls the dynamics in thel d!q'

21! l c regime, and it
arose in previous experimental, numerical, as well as th
retical studies@6,7#. Whenl cq'!1, then50 normal modes
are underdampedwith decay rate 2(q'l c)

2t0
21 and fre-

quencyA2a/rdq'52q'l ct0
21. As q'→0, the damping is

small; this is the regime in which the long-wavelength theo
and corresponding experiments@16# have been performed
The autocorrelation function for layer fluctuations in this r
gime is given by

c~q',0,t !'
kBTd

2aq'
2
cos~2q'l c t/t0!e22(q' l c)2t/t0

~ l dq'! l cq'!1!. ~32!

The behavior of then50 eigenfunctionc(q',0;z) is
simple whenl dq'!1, namely,

c~q',0;z!5A1

d
1OXS q'l d

z

dD 2C, ~33!

which has a very weakz dependence. It has been pointed o
that the static properties of the smectic-A layer fluctuations
in a film with q'l d!1 arez independent@3#; here we have
shown that a similar property holds for the dynamics as w

We have shown that the physical properties of the sys
in the q'l d!1 regime are similar to asimple fluid film. The
dynamics of the system show a competition between
elasticity due tosurface tensionand viscous loss characte
ized by the coefficienth3. The underdamped motion of
smectic-A film should not be confused with ‘‘second sound
for smectic layers, because for long in-plane wavelength
layer compression is negligible. In this regime, the und
damped motion is simply the vibration of a simple fluid fil
with surface tensiona. Also notice that although the magn
tude of qz

(0) depends on the elastic constantB, this depen-
dence does not show up in the dynamical correlation fu
tion for the hydrodynamic normal modes, as can be chec
by substitutingqz

(0) into Eq. ~25!.
To probe the crossover behavior of the film, experime

have to be performed outside theq'l d!1 regime so that the
effect of the bulk elasticity can be revealed. This can be d
by increasing the film thickness or adjusting the relev
in-plane wave vector. Whenq'l d increases to order unity
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the layer structure of the system starts to play a n
negligible role in the system. The layer fluctuations of t
normal modes withn.0 become comparable to the lay
fluctuations for then50 modes. Hence, the dynamics of th
layers for fixed q' are no longer simply controlled b
v6(q' ,qz

(0)). The first sign of this crossover behavior ca
be detected by exciting then51 modes. As pointed out in
the study of the surface dynamics of freely standing smec
A films @11,17#, this pair of modes is similar to the so-calle
peristaltic mode for a soap film. However, the characteris
time scales of these modes strongly depend on the elas
of the smectic layers; hence, the dynamic properties of th
modes actually reveal the difference between a smectic
and a soap film. The possibility of surface light-scatteri
experiments for probing these normal modes is also
cussed in Ref.@11#.

B. q'l d@1 regime

In the opposite limit,q'l d@1, the qz’s for all normal
modes can be approximated by a single expression, Eq.~28!.
One finds that, in this limit, the eigenfunctions for the norm
modes, given in Eqs.~20! and~21!, vanish on both free sur
faces as (q'l d)21→0. This means that, in this limit, the
layer displacement is not affected by the surface tension.
dynamics of the layers whenq'l d@1 is similar to that of a
bulk smecticA with thicknessd, except very close to the fre
surfaces. This can be seen from the fact that theqz

(n)’s take
values approximately equal to (n11)p/d, with a finite-size
correction. When 4r(Bqz

(n)21K1q'
4 )/h3

2q'
4 !1, the motion

of the layers is stronglyoverdamped. For givenqz
(n) andq' ,

there are two modes. The slow one, which correspond
layer undulation, has

iv2~q' ,qz
(n)!5

Bqz
(n)21K1q'

4

h3q'
2

'
@~n11!p#21l2d2q'

4

ldq'
2 ~gt0!21

.ldq'
2 ~gt0!21@t0

21 , ~34!

where we have used the fact thatld; l d
2 and g;O(1) for

typical materials. The fast decay mode now correspond
the diffusive mode forvz . Notice that, similar to bulk sys
tems@1#, the dominant fluctuations in this regime come fro
the modes withB(q(n))2;K1q'

4 , i.e., n;ldq'
2 /p@1; the

boundary conditions have little effect on thez dependence o
these modes, and their dynamics areoverdamped.

To study the dynamics of the smectic-A film in the q'l d

@1 regime for typical laboratory materials, we needq'
2 d

@B/a;106 cm21. For d;1023 cm, which can be achieve
easily, the momentum transfer in thexy plane should be a
least of order 105 cm21, which can also be achieved.

The crossover of the dynamics for the system is illustra
in Fig. 3, where the normalized dynamic correlation fun
tions C(q' ,n,t)5c(q' ,n,t)/c(q',0,0) for normal modes
with n50,1,2,3, are shown for a smectic-A film with thick-
nessd510 mm, and typical elastic coefficients and viscos
ties. The in-plane wave vectorq' is chosen such that th
-

c-

ity
se
m

s-

l

he

to

to

d
-

dimensionless parameter (l dq')225B/aq'
2 d is 20 000,

2000, 1, and 0.1, respectively. When (l dq')22520 000, the
normal modes withn.0 are negligible, andn50 normal
modes are underdamped, as one can check thatq'l c55/12
,1. For (l dq')2252000, then.0 normal modes are stil
negligible, but then50 normal modes are overdamped wi
a decay which is not a single exponential. This occurs wh
the two time scales are close to each other, as illustrate
Fig. 4 near the point of critical damping. For (l dq')2251,
the normal modes withn.0 can be observed; this is th
crossover regime. For (l dq')2250.1, the contribution from
bulk elasticity is sufficiently large that the dynamic correl
tion functions for normal modes withn.0 are easily seen in
the figure. Similarly to the undulation mode in bulk system
all normal modes decay exponentially. This is the ov
damped limit of theq'l d@1 regime. The actualq' values in

FIG. 3. Dimensionless dynamic correlation functio
C(q' ,n,t)[c(q' ,n,t)/c(q',0,0) forn50,1,2,3. The material pa
rameters are chosen to bed510 mm, B52.53107 dyn/cm2, K1

51026 dyn, a530 dyn/cm,r51.0 g/cm3, h351.0 poise, andq'

is chosen such thatd215(q'l d)22520 000, 2000, 1, and 0.1, re
spectively. log(d) in the figure is the natural logarithm.

FIG. 4. Decay rates for normal modes withn50 in the q'l d

!1 regime. The dimensionless wave vector is defined asQ
5q'd. The material parameters are chosen ash351.0 P, r51.0
g/cm3, d510 mm, and a530 dyn/cm. When the decay rate
merge, the system undergoes underdamped motion.
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the figure change over many orders of magnitude. Thus,
perimentally probing this entire figure may require differe
scattering probes.

IV. SMECTIC ORDER-PARAMETER
AUTOCORRELATION FUNCTION

As a recent numerical study shows@7#, the crossover dy-
namics in a freely standing smectic-A film can also be ob-
served in the smectic order-parameter autocorrelation fu
tion. For a thermotropic smecticA @1,2#,

r~r !5r01@^f1&e
iq0z1c.c.#, ~35!

where ^f1&5u^f1&ue2 iq0u is the dominant order paramete
for the thermotropic smectic-A phase andq0 is essentially
the inverse smectic-layer thickness. The autocorrela
function for the dominant order parameter is

^f1~r1 ,t !f1~r2,0!&5u^f1&u2e2g(r1 ,r2 ,t), ~36!

where

g~r1 ,r2 ,t !5
q0

2

2
^@u~r1 ,t !2u~r2,0!#2&

5
q0

2

2
@^u2~r1 ,t !&1^u2~r2 ,t !&

22^u~r1 ,t !u~r2,0!&#. ~37!

We shall refer to the first and second terms on the right-h
side of the above equation as thelocal part of g and the third
term as thenonlocal part. Although the translational invari
ance in thez direction is broken and the local part depen
on z1 and z2, only the contribution from the nonlocal pa
shows true correlation between the layer fluctuations at
different space-time points. The local part will provide t
‘‘counterterms’’ for some of the calculations to follow.

It is convenient to expresŝu(r 1,t)u(r2,0)& in terms of
the normal modes,

^u~r1 ,t !u~r2,0!&5(
n
E d2q'

~2p!2
c~q' ,n,t !eiq'•r'

3c~q' ,n;z1!c~q' ,n;z2!,

r'5r1'2r2' . ~38!

Each term in the local part ofg has the same form as th
above but withr'50, t50, and c(q' ,n;z1)c(q' ,n;z2)
replaced byc2(q' ,n;z1(2)). As will be shown below, the
normal modes which dominate thenonlocal part of g also
control the asymptotic behavior ofg, as summarized in Table
II. In the remainder of this section, we discuss entries in t
table and compare with existing numerical work@7#.

~i! When r'! l d , t!t0, the nonlocal part ofg is domi-
nated byq'l d@1 modes. Theq'l d!1 part ing in this short-
time limit can be approximated by its value att50, r'

50, and the layer fluctuations are dominated by then50
modes, which are independent ofz1 andz2. Hence, there is
cancellation with their contribution to the local part. Sin
the dominant fluctuation forq'l d@1 modes comes from
x-
t

c-

n

d

o

s

those withn@1, the boundary condition is not important a
long as bothr 1 and r 2 are sufficiently away from the free
surfaces@21#. Therefore,g(r 1,r 2,t) in this limit can be ap-
proximated by

g~r1 ,r2 ,t !'
1

d (
n50

E
l d
21

dq'
2

~2p!2

3@c~q' ,n,0!2c~q' ,n,t ! eiq'–r'1 i (n11)pz/d#,

~39!

wherez5uz12z2u, and we have used periodic boundary co
ditions in the z direction to simplify the expression. Th
asymptotic behavior of the above expression is the sam
that for a bulk system@6#, namely,

g~r1 ,r2 ,t !;H 2h lnr', r'
2 /ld@z/d and r'

2 /ld@t/t0

h ln z, z/d@r'
2 /ld and z/d@t/t0

h ln t, z/d@r'
2 /ld and t/t0@z/d,

~40!

whereh5kBTq0
2/8pABK1.

~ii ! When l d!r'! l c and t&t0, the relevant modes fo
the nonlocal part ofg have n50 and l c

21!q'! l d
21 , and

they are independent ofz1 andz2. Thez1 andz2 dependence
comes from the local part ofg only; hence, we will ignore it.
Similarly to ~i!, there is cancellation of the contributions o
q'l c!1 modes between the nonlocal and local parts ofg.
From Eq. ~31!, the r'- and t-dependent part ofg can be
expressed as@22#

q0
2

2 E
l c
21

l d
21 d2q

~2p!2

kBT

2aq'
2 ~12e2t/t0eiq'–r'!

'
kBTq0

2

4pa
e2t/t0S ln

r'

l c
1g̃ D1A0 , ~41!

where A0 is constant. This result indicates that the ord
parameter correlation function behaves asr'

2g(t) with a time-
dependent exponentg(t)5exp(2t/t0)kBTq0

2/4pa. This par-
ticular time-dependent power-law decay has been fo
theoretically @6# within a discrete model and also numer
cally @7#.

~iii ! When t@t0 , r'! l c , modes withq'l c@1 in the
nonlocal part ofg all decay away. Similarly to~ii !, from Eq.
~32! one finds ther'- and t-dependent part ofg,

TABLE II. Asymptotics of the autocorrelation function.

Condition
Dominant

fluctuations
Asymptotic

behavior ofg

r'! l d , t!t0 ,
and z1(2)6d/2@r'

2 /l
q'l d@1, n@1 Eq. ~40!

l d!r'! l c and t&t0 l c
21!q'! l d

21 , n50 Eq. ~41!a

t@t0 and r'! l c q'l c!1, n50 Eq. ~45!a

t/t0@(r' / l c)
2 q'l c!1, n50 Eq. ~45!a

l c!r' and t!t0 q'l c!1, n50 Eq. ~46!a

az1 ,z2 dependence ignored.
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q0
2

2 E
0

l c
21 d2q

~2p!2

kBT

2aq'
2 @12cos~2q'l ct/t0!

3exp~22q'
2 l c

2t/t0!exp~ iq'•r'!#

5
kBTq0

2

4pa
@ I 0~2t/t0!1I 1~2t/t0 ,r' / l c!#, ~42!

where

I 0~ t !5E
0

1

dQ
12cosQt e2Q2t

Q
, ~43!

I 1~ t,R!5E
0

1

dQ cosQt e2Q2t
12J0~QR!

Q
. ~44!

Using the appropriate asymptotic behavior ofI 0(t) and
I 1(t,R) provided in Eqs.~C3! and ~C7!, one finds that to
order (r' / l c)

2, ther'- andt-dependent part ofg is given by

kBTq0
2

4pa H ln
t

t0
1

r'
2

8l c
2

t0

2t

3F12A pt

2t0
e2t/2t0 erf i SA t

2t0
D 1O~e2t/2t0!G J ,

~45!

where erfi (x) is defined in Eq.~C8!. The logarithmict de-
pendence in the case ofr'50 has been seen numerically@7#,
while the more complicated time dependence of the lead
r' term has not been reported.

~iv! When l c!r' , the dominant modes in the nonloc
part of g are n50 modes with q'l c!1. The r'- and
t-dependent part ofg is also provided by Eq.~42!. Thez1 (2)
dependence is ignored as in~iii !. Two asymptotic forms fol-
low.

~a! t/t0@(r' / l c)
2@1. Using Eqs.~C3! and ~C7!, one

finds that ther' and t dependence ofg is the same as cas
~iii !.

~b! t!t0. From Eqs.~C1! and~C5!, one finds that ther'-
and t-dependent part ofg is given by

kBTq0
2

4pa F ln
r'

l c
1tA 2l c

3

pr'
3

cosS r'

l c
2

3p

4 D G1O~ t2!. ~46!

The t50 behavior in this case has been verified by the
merical work in@7#. However, notice that the time-depende
part oscillates inr' with a characteristic lengthl c , which
does not appear in the postulated scaling form of Ref.@7#, in
which the r'@ l c regime is not included in the numerica
calculation of the order-parameter correlation function@23#.
We suggest that further study of the autocorrelation funct
of the smectic order parameter will reveal this importa
length.

We have shown the asymptotic behavior of the sme
order-parameter correlation function in various regimes.
cases~i! and~ii !, the behavior agrees with existing numeric
approaches. Although ther'50 case in~iii ! and ~iv!,~a! as
well as thet50 case in~iv!,~b! are discussed in Ref.@7#,
g

-
t

n
t

ic
n
l

additional numerical and/or experimental studies are
quired to find the interestingr' and t dependence of the
autocorrelation function and especially the length,l c , which
characterizes the long-wavelength underdamped dynami

V. CONCLUDING REMARKS

The layer dynamics of a freely standing smectic-A film
have been determined by analyzing the response funct
for the surface displacement. By determining the positions
the poles of the response functions in the complexv plane,
we find not only the frequencies but also the spatial confi
rations for the hydrodynamic modes of the system. The f
that u andvz are two nonseparable hydrodynamic variabl
in general, is reflected in the form of the dynamic correlati
function for u.

Whenq'l d!1, the internal structure of the layers is n
important for the system. For fixedq' , one pair of normal
modes dominates the statics and dynamics of the sys
Furthermore, the layer fluctuations and the characteristic
quencies for these important normal modes have essent
no dependence on the elasticity of the smectic layers,
only surface tension and viscosity are important. To extr
information on the internal structure of the system, i.e.,
smectic layers, it is necessary to excite other normal mo
As discussed in Ref.@11#, exciting then51 modes provides
information on the crossover behavior of the system from
quasi-two-dimensional system to a three-dimensional s
tem. This can be done by adjusting the experimental par
eters such thatq'l d is of order unity. The mode structure fo
the system in the regimeq'l d@1 is similar to that of bulk
systems. However, the characteristic time scales for the
drodynamic modes will now acquire surface and finite thic
ness corrections as well.

The dynamic crossover behavior can also be found in
smectic order parameter autocorrelation function. In gene
for q'l d@1, t/t0!1 this autocorrelation function is simila
to a bulk smectic-A system. For long wavelength or larg
time, the behavior is controlled byl d , l c , and t0, and is
similar to an ordinary fluid film. We suggest that furth
experimental or numerical studies will reveal some intere
ing time or r' dependence of the autocorrelation function

To summarize, we have explored the dynamic proper
of a freely standing smectic-A film in the linear regime. It is
shown that existing experiments were performed in the li
where only the two-dimensional character of the film can
detected. Future experiments on the dynamical correlat
of the smectic layers may reveal the crossover behavio
the system to a regime in which layer elasticity begins
play a role. The behavior of the autocorrelation function
the smectic order parameter is also discussed and comp
with an existing numerical study. Our analysis provides
basis for the numerical results and provides a clear conc
tual picture showing the need for additional studies to
plore interesting behavior. Finally, our work also provid
the formulation for a future theoretical study of the dynam
of a freely standing smectic-A film far from equilibrium,
where experiments show behavior which is drastically diff
ent from that of a bulk system@9#. The effect of finite thick-
ness and surface tension will have to play a central role
theory which describes such dynamical behavior.
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APPENDIX A

We discuss permeation processes in free-stand
smectic-A films in this appendix. We look for a solution o
the equations of motion with boundary conditions and ex
nal forces given in Sec. II. In the long-wavelength, low
frequency limit@13# the solution is of the form

u5uel1up , ~A1!

where

uel~r ,t !5uS~q' ,v!cos@qz~q' ,v!z#eiq'•r'2 ivt

1uA~q' ,v!sin@qz~q' ,v!z#eiq'•r'2 ivt ~A2!

is the approximate solution used in the text. It is independ
of the permeation constant. The second contribution

up~r ,t !5@up
1~q'!e1(11 i )p(q')(z2d/2)1c.c.#eiq'•r'2 ivt

1@up
2~q'!e2(11 i )p(q')(z1d/2)1c.c.#eiq'•r'2 ivt

~A3!

contains an inverse length,p(q')5Aq'/2(zPh3)1/2, which
characterizes the decay of permeation away from the
surfaces. In typical materialsp(q')@q'@qz in the low-
frequency, long-wavelength regime@13#. The amplitudesup

6

contain the contributions from permeation and are relate
uel through the full boundary conditions.

From Eqs.~9! and ~7! we find thatuup
6u!uuelu, i.e., the

contribution of permeation to the layer displacement is sm
@11#. Then Eq.~6! leads to

z6'@uel#z56d/2 . ~A4!

It is straightforward to show that the elastic free energy

F5
1

2 E dVH BS ]u

]zD 2

1K1S ]2u

]x2
1

]2u

]y2D 2J
1 (

i 51,2

1

2 E dSi aH S ]z i

]x D 2

1S ]z i

]y D 2J
'

1

2 E dVH BS ]up

]z D 2

1BS ]uel

]z D 2

1K1S ]2uel

]x2
1

]2uel

]y2 D 2J
1 (

i 51,2

1

2 E dSi aH S ]uel

]x D 2

1S ]uel

]y D 2J
z56d/2

. ~A5!
-

g

r-

nt

e

to

ll

s

In the linear theory the contribution from permeation can
separated from the contribution fromuel . Sinceuup

6u!uuelu
in the regime where we perform this long-wavelength ana
sis, we can neglect theup part. However, it isuel , not the
full displacementu, that can be expanded as a linear com
nation of the normal modes discussed in the text and satis
BC28 @Eq. ~19!#. Whenup is included, the permeation forc
B]u/]z vanishes on the free surfaces due to the existenc
up . This has been noted in the literature@18,19# but has not
been discussed in previous studies of statics and dynamic
free standing smectic-A films@3,6,7#.

APPENDIX B

In this appendix we calculate the dynamic correlati
functions foru andvz . We consider theuel part only; theup
part simply corresponds to the permeation mode discusse
the literature@1,10#. Our starting point is the equations o
motion, i.e., Eqs.~3! and~4!, and the dynamics of the norma
modes labeled by (q' ,n) are considered. Eliminating th
pressure via the incompressibility condition, we find th
there are two diffusive modes associated withvx andvy , but
vx andvy decouple fromvz andu @2#. Neglecting permeation
@20#, the equations forvz andu can be expressed as

]

]t S u

vz
D 5S 0 1

2R 2D D S u

vz
D , ~B1!

where

D5
1

r
h3q'

2 ~B2!

represents the dissipative part and

R5
1

r
~Bqz

(n)21K1q'
4 ! ~B3!

represents the reactive part. We have used the fact thatqz
(n)

!q' for all n in the regime of our calculation to simplify th
expressions. The eigenvectors of the above matrix equa
are

F65
1

A11@ iv6~q' ,qz
(n)!#2

S 1

2 iv6~q' ,qz
(n)!

D , ~B4!

with eigenvalues 2 iv6(q' ,qz
(n)) given in Eq. ~12!.

Straightforward algebra leads to the following relation:
S u~ t !

vz~ t !
D 5

1

iv12 iv2
S @ iv1e2 iv2t2 iv2e2 iv1t#u~0!1@e2 iv2t2e2 iv1t#vz~0!

2v1v2@e2 iv1t2e2 iv2t#u~0!1@ iv1e2 iv1t2 iv2e2 iv2t#vz~0!
D , ~B5!
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where we used simplified notation,v65v6(q' ,qz
(n)),

u(t)5u(q' ,n,t), vz(t)5vz(q' ,n,t), etc. From this one
concludes that the dynamic correlation function foru is

^u~q' ,n,t ! u~2q' ,m,0!&

5dnm

iv1e2 iv2t2 iv2e2 iv1t

iv12 iv2
^uu~q' ,n,0!u2&

5dnm

iv1e2 iv2t2 iv2e2 iv1t

iv12 iv2

kBT

Bqz
(n)21K1q'

4
, ~B6!

as given in Sec. II. The calculation of the correlation fun
tion for vz is similar to that foru.

APPENDIX C

We discuss some asymptotic behavior of the integ
I 0 ,I 1 in this appendix.I 0(t) is defined in Eq.~43!. In the t
!1 limit, expanding aroundt50 to lowest order, one finds

I 0~ t !5
t

2
1O~ t2!. ~C1!

When t@1, one reexpresses Eq.~43! as

I 0~ t !5E
0

1

dx
12~cosx!exp~2x2/t !

x

1E
1

tdx

x
2E

1

t

dx
~cosx!exp~2x2/t !

x
. ~C2!

The first and the third terms on the right-hand side tend
constants in the large-t limit,

E
0

1

dx
12~cosx!exp~2x2/t !

x
'0.24,

2E
1

t

dx
~cosx!exp~2x2/t !

x
'0.34, t@1.

Hence

I 0~ t !'0.581 ln t, t@1. ~C3!
e,

u,

.

,

o

-

ls

o

Next we examine the asymptotic behavior ofI 1(t,R),
which is defined in Eq.~44!. WhenR!1, t!1, expanding
I 1(t,R) aroundR50, t50 yields

I 1~ t,R!5
R2

8
2

R2t

12
1O~ t2,R4!. ~C4!

WhenR@1, t!1, expandingI 1(t,R) aroundt50 leads to

I 1~ t,R!5E
0

1

dQ
12Q2t

Q
@12J0~QR!#1O~ t2!

'g̃1 ln R1S 2
1

2
1

J1~R!

R D t1O~ t2!

'g̃1 ln R1F2
1

2
1A 2

pR3
cosS R2

3p

4 D G t,

~C5!

where

g̃5E
0

1dx

x
@12J0~x!#2E

1

`dx

x
J0~x!'20.116, ~C6!

and J1 is the Bessel function of the first kind. The identi
d„xJ1(x)…/dx5xJ0(x) and limit J1(x)'A2/pxcos@x
23p/4# for x@1 have been used. Whent@R2 and t@1, a
change of variables yields

I 1~ t,R!5E
0

Atdx

x
cos~xAt !exp~2x2!F12J0S xR

At
D G

'
R2

4 F12e2tcost

2t
2

Ape2t/4

4At
erf i SAt

2 D G , ~C7!

where the Bessel function has been expanded and

erf i ~x!5erf~ ix !/ i . ~C8!

For largex using standard manipulations on the error fun
tion of a complex argument, one has

erf i ~x!'exp~x2!@~1/Apx!1~1/2Apx3!1O~x24!#

@24#.
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